
N.B. A pdf version is also available.
My girlfriend gave me Warren’s Hacker’s Delight for Christmas. It’s really

a nice compendium of tricks that are usually available on the web, but strewn
across a dozen websites.

I only started reading it this morning, and I figured I’d put some of my
notes here instead of leaving them in the margins. The page numbers refer to
the ninth printing.

1 2-5: Sign Extension (p. 18)

For sign extension (i.e. replicate the kth bit to the left), Warren suggests (for
sign extension of a byte into a word):

1. ((x + 0x00000080) & 0x000000FF)− 0x00000080

2. ((x & 0x000000FF)⊕ 0x00000080)− 0x00000080

When one knows that the higher bits of x are all zero, the second variant be-
comes (x⊕0x00000080)−0x00000080. A similar variant is x|−(x & 0x00000080).

Warren’s variant doesn’t require any temporary register, but needs a single
constant twice. Mine only requires that constant once, but needs a temporary
register. On x86, with its good support for constant operands, Warren’s is
probably preferable. With a RISCier ISA, the other version could be useful.

2 2-9: Decoding a “Zero Means 2**n” Field (p.
20)

The idea here is that we have a field which will never take a value of 0; it
could however, take any value from 1 to 2n. We obviously want to pack this
into exactly n bits. A simple encoding would simply map 0 to 1, 1 to 2, etc.
For various reasons, we’re sometimes stuck with an encoding where everything
except 0 maps to itself, and 0 to 2n.

Notice that 0 ≡ 2n mod 2n. What we want to do is perform an identity
modulo 2n, but skip the modulo on the final result. Obvious candidates are
x−1+1, x+1−1 and 0−−x (and since we’re working modulo 2n, −1 ≡ 2n−1
and 0 ≡ 2n).

From Warren’s list of eight “identities” (for 2n = 8), three clearly fall from
the above:

1. ((x− 1) & 7) + 1

2. 8− (−x & 7)

3. ((x + 7) & 7) + 1

1

http://www.hackersdelight.org

Interestingly, those involving | − 8 also do! x | − 8 computes (x & 7)− 8:
it’s sending x to a representative from its equivalence class modulo 8, but to
the smallest negative value, instead of the smallest positive value. The intuition
is that, like masking with 7, all but the three low bits are discarded; however,
instead of filling the rest with 0s, like & 7, | − 8 fills them with 1s.

3 Extra! Extra!

This entry is more markup-heavy than usual. That would be because I’m
actually typing this in LATEX, while a Lisp script drives the conversion (via
tex4ht) into XHTML for pyblosxom. You can find the script at http://
discontinuity.info/~pkhuong/tex2blosxom.lisp. It’s a hack, but it works!

2

http://www.cse.ohio-state.edu/~gurari/TeX4ht
http://discontinuity.info/~pkhuong/tex2blosxom.lisp
http://discontinuity.info/~pkhuong/tex2blosxom.lisp

	2-5: Sign Extension (p. 18)
	2-9: Decoding a ``Zero Means 2**n'' Field (p. 20)
	Extra! Extra!

