
 Modernising register allocation in SBCL
 ==

Author: Alexandra Barchunova
Date: 2013-05-02 13:04:59 CEST

1 Project Aim
==============

This project aims to improve the compiler back end by enhancing the
 register allocation procedure. To realize this goal, we propose to
 implement
+ a new heuristic optimization based on coloring the global
 interference graph,
+ live ranges and live range splitting,
+ spill code insertion.

The task of the register allocator is to assign an unconstrained
number of temporary names (TNs) in the intermediate representation
(IR) to a finite number of registers. A naive approach yields too
many memory operations resulting in a reduced execution speed. The
currently implemented SBCL register allocator performs only graph
coloring, essentially treating spills by coloring with stack slots. In
order to improve the allocator, we propose to integrate a new
heuristic graph coloring method inspired by the concepts introduced by
Briggs et al. (1994) in the SBCL compiler. According to Briggs'
results of the optimistic coloring, the proposed enhancements can be
expected to increase performance of produced code by up to 15\%.

2 Project Plan
===============

The steps to take are described in the following subsections.

2.1 Find suboptimal examples

In order to improve register allocation in SBCL, as a first step we
search and analyze examples of suboptimal register allocation that are
due to suboptimal coloring. Such examples will demonstrate the
specific problems of the register allocation, and can serve as
benchmark data during the test phase of the extended register
allocation method.

Inferring simple heuristics capturing suboptimal register allocation
from such examples might enable us to detect problems within larger
pieces of machine code automatically. This might give us
understanding, how often each type of suboptimal allocation occurs.

At the same time, we would like to conduct the common analysis of the
register allocation quality in which we compare different allocation
methods based on benchmark data.

2.2 New simple coloring heuristic

This step will be dedicated to implementation of an alternative graph
coloring method based on Briggs's colouring heuristic (without the
spill insertion phase). This implementation will be then test-wise
integrated in the SBCL compiler.

2.3 Visualization

For convenient debugging, we develop a visualization of the
algorithmic steps (coloring etc.) with
graphic plug-ins. An example of initial visualization can be found in the following
Figure.

2.4 Static live range splitting

In this step we plan to implement static aggressive live range
splitting based on the control flow graph.

2.5 New allocator based on live ranges

In this step we rearchitect the allocator to work with live ranges
 rather than with variables.

2.6 Spill code insertion

In this step we extend the allocator by inserting spill code.

In order to improve choice of spills, we can (optionally) implement
 different criteria that capture the quality of register allocation.
 For this purpose the well known and intuitive heuristics can be
 used:
+ spill temporaries with most conflicts
+ spill temporaries with few definitions and uses
+ avoid spilling in inner loops
+ combination of the above.

2.7 New interface for register allocation
--

In order to accommodate different heuristics, we define an interface
that specifies the method of register allocation:

Current interface:

 allocate-registers(TNs) -> storage allocation

New interface:

 allocate-registers(TNs, allocation method) -> storage allocation

where the allocation method could be defined by coloring, iterative
coloring, spills heuristic, etc.. By such accommodation of different
allocation strategies, the interface will enable convenient
development and comparison of different methods.

2.8 Iterative Graph coloring (optional)

This step implements the iterative heuristic method for register
allocation optimistic coloring (Briggs et al., 1994). As a test
benchmark I propose to use the SBCL code.

2.9 Code and Speed Analysis (optional)
--
In this step we
+ compare the generated code for different allocation methods
+ compare the speed of compiler for different implementations of register allocation

2.10 Schedule

3 Risks and challenges
=======================
+ more sophisticated allocator could perform worse in practice
+ compilation time could be increased through application of the
 additional procedures
+ it is not clear how to combine the new approach with the present
 heuristic
+ might perform differently on different architectures

The above-mentioned open questions have to be clarified based on conducted
experiments.

4 Project-relevant background
==============================

4.1 degrees

+ diploma in computer science, Christian-Albrechts University , Kiel, Germany
+ PhD student in "Intelligent systems", Bielefeld University, Germany

4.2 studies

+ deep knowledge of Approximative and efficient
 algorithms, Compilers, Graph theory

4.3 programming experience:

+ Python, Common Lisp, C++, (during PhD)
+ Matlab, Java, scheme, Haskell, sml, bash, 68000 (during studies)

4.4 tools

+ emacs, slime, gnuplot, graphviz

4.5 work experience

+ scheme and sml course-tutor (among other work)

5 Personal Motivation and Suitability
======================================
On the one hand, practical experience with assembler programming, lisp programming,
and, on the other hand, a solid theoretical background in theoretical
computer science and compilers, optimally qualify me for the participation in the
GSoC.

As a dedicated user of open source software since childhood, I am
highly willing to contribute to an open source project. SBCL has been
indespensibe tool for achieving of the most results within the PhD
studies.

No commitments for the period 17th of June to 23rd September.

6 Contact with community
=========================
During the community bonding period, I have followed the discussion on the SBCL
irc-channel and the mailing list. The submitted bug patch can be
found on the lauchpad under:

[https://bugs.launchpad.net/sbcl/+bug/789497]

https://bugs.launchpad.net/sbcl/+bug/789497

